On the Seeding of Self-Reproducing Systems

Amor Menezes and Pierre Kabamba

Department of Aerospace Engineering
University of Michigan
Ann Arbor, Michigan 48109-2140

amenezes@umich.edu, kabamba@umich.edu

November 4, 2008

Abstract

This report is motivated by the need to minimize the payloa$sirequired to establish an ex-
traterrestrial robotic colony. One approach for this miaimtion is to deploy a colony consisting
of individual robots capable of self-reproducing. An imgaort consideration for the establishment
of such a colony is the identification of a seed. Since sgfa@uction is achieved by the actions of
arobot on available resources, a seed for the colony cemdiatset of robots and a set of resources.
In this work, we discuss possible approaches to the seedoidgm under certain assumptions,
providing three novel algorithms to determine a seed folfareproducing system. Two of these
algorithms find optimal seeds for particular classes ofigfoducing systems. Here, optimality
is understood as the minimization of a cost function of thewoeces and robots. lllustrations of
each algorithm are provided.

Contents

List of Figures

1.1 Pictorial representation of Definitibr 1. o o ot 4
1.2 The directed reproduction graphﬁ.l).. -

Chapter 1

Introduction

Recent scientific research in self-reproduction has ralsegtospect of advances in such diverse
areas as space colonization, bioengineering, evoluyosaftware and autonomous manufactur-
ing. Inspired by the work of John von Neumann [1], extensiuelg of self-reproducing systems
has taken place, including cellular automata, computegrnaras, kinematic machines, molecu-
lar machines, and robotic colonies. A comprehensive ogeraf the field is documented in [2]
and [3].

Von Neumann postulated the existence of a threshold of caxitplbelow which any attempt at
self-reproduction was doomed to degeneracy. However,hedatidefine either complexity or de-
generacy, nor did he compute the threshold’s value. An sitetliterature survey in [4] indicates
that no one had published an evaluation of this thresholbarfdallowing 60 years. Recently, [5]
developed a novel theory of generation that is able to coenthis von Neumann threshold. The
results included a necessary and sufficient condition foreegenerate offspring, i.e., offspring
with the same reproductive capability as the progenitoreRgice [6] presented a probabilistic ver-
sion of these results, and also demonstrated parallelsnmigimation theory. References [7], [8],
and [9] extended these results by providing algorithmsitheritified a seed for various classes of
self-reproducing systems. Two of these algorithms prodyatamal seeds. This work is a more

detailed exposition on all three algorithms.

The remainder of this chapter presents a rationale for tletiiication of a seed for a self-
reproducing system and discusses what makes the genedaig@eoblem difficult. Chapters 2
through 4 highlight the results of solutions to seeding @/kikamining their advantages and lim-
itations; chapter 2 documents the Seed Identification anmefagion Analysis (SIGA) algorithm,
chapter 3 details the Restricted Seed Identification (RSHrdalgn, and chapter 4 documents the
general Seed Identification (SI) algorithm. Each chaptesgnmts the necessary assumptions and
definitions for seed identification, analyzes the propsmiea seeding algorithm, and provides at

least one illustrative example. Chapter 5 presents comelgsi

1.1 Motivation

Within the context of extra-terrestrial colonization, @mt phased approaches to Martian explo-
ration see the development of an enduring robotic presendbeoMoon in the next five years.
Several space agency roadmaps, of which [10] is typicagesighat individual countries will de-
ploy advanced robots on an as-needed basis to expand thef sizeestablished colony. It is well
known, however, that for every unit mass of payload to bedhed into space, eighty additional
units of mass must be launched as well [11] - hence the mativé endow robots with the ca-
pacity for self-reproduction. These machines would be &bldilize on-site resources to enlarge
their numbers when deemed necessary for a given task. textestrial systems with such capa-
bility are less dependent than traditional colonies on theaficonstraints of multiple launches of
robots. Self-reproduction may therefore provide a higlugteeffective option for extra-terrestrial
colonies.

To minimize mass, it would be even more efficient to identifg tequired initial elements for
a self-reproducing system, and send the smallest quaiftityse into space. The identification of

this “seed” is the goal of this report.

1.2 Background

We first define the following terms for use throughout the waeroduction, replication, self-
reproduction, and self-replication. For a historical pexgive of the first two terms, the reader
is referred to Freitas’ excellent discussion on the subjef2]. We consider reproduction in bi-
ological systems to encompass the capacity for genetictiongaand evolution. Thus from an
information standpoint, reproduction involves a changéh&DNA code during the generation of
progeny. Likewise, we will takeeproductionin an artificial generation system to imply a change
in the information specifications of an offspring. We resgsetive ternreplicationfor progeny that
have identical information content to that of the progemitelf-reproducingandself-replicating
will be used to refer to those entities that perform the imfation equivalent of asexual reproduc-
tion or mitosis, i.e., the entities can reproduce or repdidesed on the information specifications
of only one progenitor.

The reader is referred to [5] for details of Generation TheBriefly, the theory formalizes self-
reproduction by “machines,” a term describing any entigt ik capable of producing an offspring
regardless of its physical nature. Hence a robot, a baateriw even a piece of software code
is considered to be a machine in this theory if they can eastiyme another robot, bacterium or
some lines of code respectively. These machines utilizeuress to self-reproduce. A selected
resource is manipulated by the parent machine via an embeghdesration action to produce an

outcome, which itself may or may not be a machine. Thus, westate the following:
Definition 1.1. A generation systeins a quadruplé' = (U, M, R, G), where

e U/ is auniversal setthat contains machines, resources and outcomes of attenptdf-

reproduction;
e M C U is aset of machines

e R C U is aset of resourcethat can be utilized for self-reproduction; and,

e G : M x R — U is ageneration functiorthat maps a machine and a resource into an

outcome in the universal set.

It is possible that\/ N R # @, and alsoM U R # U, as illustrated in Fig._1l1. The former
implies that machines can belong to the set of resourcesthenthtter states that outcomes of

attempts at generation may be neither machines nor resource

U

Figure 1.1: Pictorial representation of Definition]1.1.

When a machine € M processes a resource= R to generate an outcomec U, we write:
y=G(x,r). (1.1)

In (1.J), we say that # is capable of generating” and we call the procesgproduction If we
haver = G(z,r) then we say thats is capable of generating itself,” and we call the process
replication

We also use concepts from graph theory [12] in this paperafigu (I.1) may be represented
by adirected reproduction graphy, as shown in Fidl.2 In this diagram, machine and outcome

y are vertices, resourceis an edge, and the direction of the edge indicates that machises

D

7

resource- to generate outcong

Figure 1.2: The directed reproduction graph[of{(1.1).

Definition 1.2. Thedirected graph representatiaof a generation systein= (U, M, R, G) is the
directed supergrapfi/, E) containing all directed reproduction graphs that produeehines in
M. Thus the vertex sel/, of the supergraph is the machine set, and the edge set;, of the

supergraph is the s¢t € R|ly = G(z,r),x € M,y € M}.
Definition 1.3. Thegeneration sets1 a generation system are defined as:
e M, = M, the set of all machines;

e M., the set of all machines that are capable of producing a meadafiM/;, Vi > 0. That

is, forz € M,;,1, 3y € M; such thaty = G(z,).

These sets are nested with the innermost generation set ingaortant for self-reproduction.

This set can be defined as:

M = ﬁ M;. (1.2)
1=0

It is shown in [5] that generation always proceeds outwabdso, the notion of the rank of a

generation system, as defined below, is emphasized.

Definition 1.4. Therank of a generation system(I'), wherel' = (U, M, R, G) with generation
setsM;, i« > 0, is the smallest integey such thatM, = M,.,. If Vi, M; # M,,,, then the

generation system has infinite rank.

For a generation system of finite rapkthe nesting of the generation sets stop at the integer
All generation sets of order greater thanincluding M., are equal tal/,. A generation system

that has a finite number of machines always has finite rank.

Definition 1.5. The rank of a machingp(z), in a generation systefi = (U, M, R, G) with
generation setd/;, i > 0, andp(") = p, is equal toi if x € M;\M,,, (“deficient generation

rank”), or is equal tg if = € (-, M, (“full generation rank”).

Definition 1.6. A generation cyclas a sequence of generations resulting in the production of a

machine identical to itself after generations.

Machines capable of replication (i.e., a generation cytlerder one) in a generation system
must belong ta\/.,, and any exit from\/,, is irreversible. It is possible for offspring machines to
belong to), as long as their progenitors do as well. Thus the requiresrfeninon-degenerate
reproduction and replication are quantified. It is provefbirthat there is a minimum threshold of
rank above which a machine is able to generate an offspritigpwi a decrease in generation rank.

We call this thevon Neumann Rank Threshpid, which satisfies

7 = p(I). (1.3)

The reader is referred to the material in [5] for proofs of éheve statements, as well as many
other insights into the information requirements of seffnoducing systems.
We can use a compact notation to denote a sequential seledti@sources. Lefr,) be a

sequence ofi resources fronk. We define the notation

G(z,(r,) =G(...G(G(z,r1),72) ..., Tp)-

1.3 Difficulty of the Seeding Problem

Many factors contribute to the inherent difficulty of seegimcluding:

(a) the possibility that a given generation system is made up wfiphte, disjoint subsystems,
each with a different seed. Alternatively, there could bdtiple, intersecting subsystems,
with some common seed elements in each subsystem. Any gesdorithm would have to

be able to deal with both possibilities without amyriori knowledge about the system.

(b) the potential for generation cycles within a given selfrogfucing system. If a cycle exists,

then one wonders which machine in the cycle, if any, shoulorggto the seed.

(c) the fact that degenerate machines should not belong to #luefeea self-reproducing system.

On the other hand, if all the machines in the generation sysi®e degenerate, then one must

identify a machine that is of highest generation rank to skecgystem.

(d) the complexity of the resource set. A consistent theme inliteeature is that a machine
operates on an ordered list of elements constituting a resoiihis list can include duplicates
of elements contained in another resource that is also arextdist. In addition, each list can

also include machines.

(e) the existence of self-reproducing systems where the ptmgtuof copies of a progenitor re-
quire the assistance of its offspring. Such systems aralenety examples include the Krebs
cycle in a cell [13], the atmospheric ozone cycle and the apheric ozone cycle attacked by
chlorine [14], the nitrogen cycle when starting a new aquarj15], and some manufacturing
systems as described in Appenidik Typically, this phenomenon manifests itself as a combi-
nation of (b) and (d), when a resource employed at some sfaggeneration cycle contains
a machine that is generated at a different stage in the citdenot always clear whether to

include the progenitor, its offspring, or both, in the seed.

It is perhaps because of all of these factors that the segdoigem is still mostly open. We
approach this problem by first considering a simplified gatien system under restrictive assump-
tions, for which a seed is easily identified. This gives usS$ked Identification and Generation
Analysis (SIGA) algorithm. The restrictive assumptions tiren systematically relaxed to yield a

more general seeding methodology.

Chapter 2

The SIGA Algorithm

To formulate the seed requirements of a self-reproducistegy in a mathematically precise way,
we make some assumptions about the generation system. d$ss@ptions help structure the

seeding problem but, in some cases, unfortunately makeptmal seeds possible, as described.

2.1 Assumptions and Problem Definition

We start by listing the basic assumptions required to seeshargtion system.
Assumption 2.1. Both the number of machines and the number of resources aee fini
Assumption 2.2. An inexhaustible supply of each resource is available.

Assumption 2.3. All the machines in the generation system must be produdthdugh they need

not all belong to a seed.

We now make assumptions with respect to both machines aodrees. We first assume that
every resource in the sdét of a generation system is utilized by a progenitor machin¢hab

another machine can be produced.

Assumption 2.4.LetI" = (U, M, R, G) be a generation system. We assume'that R, 3z € M
such thaG(x,r) € M.

This assumption simplifies the selection procedure of nessusince it implies that all re-
sources are necessary to produce offspring. Hence, a gegldiorithm can simply identify all
possible resources as constituents of a seed. If we aca@lkihesources are necessary however,
then we allow ourselves the possibility of selecting redumdesources. For instance, if there exist
two resources such that a progenitor machine will produeesgitme offspring with each of those
two resources, then by taking both resources in the seeduadant selection has been made and
the resulting seed is non-optimal. We ignore this posgjbdnd consider it an avenue for future
refinement.

We allow for complexity within the resource set, and enablghaesource to contain an ordered
list of physical elements that may include machines. Weetloee define a containment relation as

follows.

Definition 2.1. If machinex; belongs to an ordered list of the elements of resouycthen we say

thatz; is containedin r;, and we writex; < r;, where <" is the containment relation

Of course, if machine; is a resource itself, then this relation still holds true. kWé=d the
following definition as well, before stating an assumptianresources that has been made in all

literature to date.

Definition 2.2. If machinesx, z-, ..., z, are contained in resouraee then we use the notation
r\(z1,x2,...,x,) to refer to an ordered list of the elements-ahat does not contain the machines
T1,T2,...,Ty.

Assumption 2.5.LetT" = (U, M, R, G) be a generation system. We assume that if machiise
contained in resource = < r, then the ordered list of the elementsrahat does not contain the

machiner also belongs to the set of resources, gy, € R.
Next, we assume that every machine in the generation sysisra progenitor machine.

Definition 2.3. A surjective generation systeisi a generation systein = (U, M, R, G) where

Vy € M,3z € M, and3r € R such thaty = G(z,r).

9

We further assume that there exists a machine in the gemeatstem that is capable of pro-
ducing any machine in the system aftegenerations. This is a special case of a surjective gener-

ation system.

Assumption 2.6. We assume that in the generation sysiéem (U, M, R,), 3z, € M such that

Vo, € M, 3y < p,3ry,re, ..., 1, selected fromk such that

G (:1307 (Tul)) = 1.

This rather restrictive assumption will give us the SIGAalthm.

Definition 2.4. A seed forl" of order . is a set

S = MgsU Rg, where
Mg = {l‘o},MSgM, and

Rs = {ri,ro,...,7,}, Rs C R,
such that'y; € M, 3uy < oo0,3(r,,) € Rs, such that

G(wo, (1)) = v1-

We can now state the following.

Seed Identification Problem 1.GivenI’, determine a seed under Assumpti@akthrough2.6.

2.2 Methodology

To solve Seed Identification Probléhwe need to remove all degenerate machines from the sets
M and R to determinelM s and Rg, and select one of the remaining non-degenerate machines to

be xy. The approach to developing a seed identification algorithsimilar to the Generation

10

Analysis Algorithm (GAA) [5], and in fact utilizes the GAA iits operation. The GAA employs

the concept of aouter layer first introduced in [5] and defined as follows.

Definition 2.5. Theouter layerof a generation systein = (U, M, R, G) is the setM,\ M. This
is the set of machines such that, no matter what resourceuie\they produce an offspring that

is no longer a machine, i.e.,

M\M, ={x e M :Vr e R,G(x,r) ¢ M}.

After an outer layer is removed, a generation system of redivenk remains. The GAA works
by “peeling away” the outer layers of each of the resultamegation systems. We apply a similar
notion to the development of the SIGA algorithm, having tlgoathm peel away outer layers in
both the set of machines and the set of resources, beformgioke machine and the remaining
resources to belong to the seed set.

By Assumptiori2.4, any resource that does not contain a machine is assignedttelseed.
Next, the machines in the outer laydi,\ M, are of lowest rank, do not help to perpetuate the
system, and hence should not be in the séedhus, the outer layer of the machine set needs to
be identified.

Let M = {x,zs,...,x,} and consider th®escendancy Matrpdefined as the x n matrix

of integers,D, such that

1, if3dreR:z;=G(x;,r);
D;j = (2.1)

0, otherwise,

that is,D;; = 1 if machinexz; is capable of generating maching andD,; = 0 otherwise.

Now let R = {ry,rs,...,r,} and consider th€ontainment Matrixdefined as thes x m

11

matrix of integers(’, such that
1, ifx < T,
Cij = (2.2)
0, otherwise,
thatis,C;; = 1 if machinez; is contained in resouree, or is indeed a resource itself, agg = 0

otherwise.

Let theSeed Matrixbe defined as the x (n -+ m) matrix of integersy:, such that

= {D C} . (2.3)

Then the set of resources that do not contain any machinést®on$those resources such that
the corresponding columns of mattikare zero. These columns may be removed figrand the
respective resources includeddn The outer layer of\/ consists of those machines in the matrix
D that have corresponding rows of zeros. These rows, and tihesponding machine columns
(even if not all zero), may be removed fron) and the respective machines addedtdhe set
that is not the seed. If any of the removed machines exactlglegpne of the resources, then that
corresponding column may be removed frohas well.

We are now left with a reduced order generation system, Hrabe seeded in a similar fashion.
The process of removing resources in the containment madtiewed by removing lower-rank
machines in the descendancy matrix and possibly in the itonént matrix too, can be repeated to
deflate the seed matrix until there are no more resourcestove In each iteration, the columns
of zeros in the matrixXC’ denote those resources that are devoid of lower-rank mashidf course,
if a particular resource is nothing but a lower-rank machthen this algorithm removes it from
inclusion in the seed.

Once the iterations are over, one of two conditions may odteould be that all columns of
the containment matrix have been removed, leaving nothunghe descendancy matrix. Thus all
w resource elements of have been found, with < m. If D can be further deflated, then this

should be continued to obtain the machine of highest rank. ndedlations ofD are no longer

12

possible, the machine of highest rank can be added agtrequired byS. If several machines
are of equally high rank, then any one of these machines maglbeted as.

If, on the other hand, there are still resource columns keft,they cannot be removed due
to the presence of a 1, then each resource can now be addéedddong as we deal with the
corresponding machines that the resource requires (thewativ the 1). These machines are all of
equal rank. By Definitio2.4 we can pick any one of these machines to be the requiyéar S.

In short, of the difficulties listed in Sectidh.3 (c) is effectively handled, (b) and (d) are
ineffectively handled, and (a) and (e) are not handled.

The SIGA algorithm as stated is guaranteed to stop after & fmuimber of steps. This is
because each iteration removes elements from a set with Gartinality, stopping once the set is

depleted. We summarize the algorithm in Secgd®

2.3 Pseudocode

Input: a generation systemi = (U, M, R, G), where the setd/ = {zy,z,,...,2,} andR =
{ri,re,...,rm} satisfy Assumptiong.1 through2.6
Outputs: the sets(Mo\M;), (M\Ms), ..., (M,-1\M,), M, = M, the von Neumann rank
thresholdr, = p(I'), the seed sef, and its ordey..
1: Compute thew xn descendancy matrii, then x m containment matrix’, and the: x (n+m)
seed matrix..
2: Initialize i = 0, u = 0.
3: while R is not empty, and’' has at least one column of zeros, avids not emptydo
4: for each column of zeros i@ do
5: Addr;to S.
6: po— p+ 1.
7. end for

8: UpdateR by removing the resource elements corresponding to zeuwrod ofC'.

13

10:

11:

12:

13:

14:

15:

16

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33

UpdateX by removing the corresponding zero columngof
return (M;\M,,,), the set of machines corresponding to zero rowd of
UpdateM by removing the machines corresponding to zero rows of
UpdateX by removing the zero rows and corresponding zero column®,0fnd any
columns inC for which the resource exactly equals the machine that has@rpw in
D.
if machines have been removed in this iteratizen
1— 1+ 1.
end if
. end while
if Ris emptythen
while M is not empty and) has at least one row of zerds
return (M;\M;,), the set of machines corresponding to zero rows of
UpdateM by removing the machines corresponding to zero rows of
UpdateX by removing the zero rows and corresponding zero colums. of
if machines have been removed in this iteratioen
71— 1+ 1.
end if
end while
return p.
return (My) «— M.
if [M| > 1 then
Pick an element of M) to add toS.
else
Add machine i M) to S.
end if

- end if

14

34: if C does not have a column of zeribeen

35: while M is not empty and has at least one row of zerds

36: return (M;\M,41), the set of machines corresponding to zero row® of
37 UpdateM by removing the machines corresponding to zero rows of
38: UpdateX by removing the zero rows and corresponding zero colums. of
39: if machines have been removed in this iteratioen

40: 1— 1+ 1.

41: end if

42: for each column of zeros ¢ do

43: Addr;toS.

44: end for

45: UpdateRR by removing the resource elements corresponding to zeuorocw ofC'.
46: UpdateX by removing the corresponding zero columngof

47: end while

48: for each remaining column i@ do

49: Addr;\(x € M)toS.

50: po— o+ 1.

51: Pick a machine for which; has a one in its row t§.

52: UpdateR by removing these resources.

53: UpdateX: by removing the last columns 6f.

54: end for

55: return pu.

56: return (M) < M.

57: end if

58: return 7, < 1.

15

2.4 Example Application

We can use Generation Theory and the SIGA algorithm to aaahegSemi-Autonomous Replicat-
ing Systendesigned by Chirikjian et al. [16,17].
We takeM to be the set of all entities that are made up of two or more LEMBQustorm kit

components fixed together in some way. Let

M = {l‘l,l‘g,l’g,1'4,1'5,.556,1)7,1'8,1'9}, and

R = {ry,ra,73,74,75,76,77,78,T9 }

where we define each of the constituent machines and resourd¢ke following manner. The

sequence of generation steps is also outlined. The replicptocess is illustrated in Fig.1[16].

= Sug W .
|
(ﬁ _._) Station 1
f RCX-Chassis Assembly t
L]

Station 3
Gripper Assembly

Station 2
Motor/Track Assembly

Original Robot

Station 2

Painted Line Original Robot
5 6

Figure 2.1: Replication process of the Suthakorn-Kwon-jiém robot.

x, := prototype robot

r1 := (conveyor-belt/sensor unit, docking unit, electrical mwector, central controller unit

16

(CCU), electrical cable)

x9 := chassis assembly station

xo = G(x1,71)

ro := chassis

x3 := chassis aligned in assembly position

r3 = G(x1,79)

r3 := (robot control systemys)

x4 := RCX-chassis assembly

xy = G(xa,13)

r, = gripper assembly/disassembly statien(CCU, electrical connector, ramp and lift sys-
tem, gripper)

x5 := prototype robot with gripper

x5 = G(x1,74)

1 = G(x5,74)

r5 := (left LEGO hook, right LEGO hook, CCU, electrical connectagt®nary docking sen-
sor, motorized pulley unit)

xg := motor and track assembly station

zre = G(x5,75)

re¢ := (left LEGO track, right LEGO track)

x7 := tracks aligned onto hooks

7 = G(x1,76)

r7 := (motor/sensor unity,)

xg := RCX-chassis-motor assembly, moved to position

rg = G(x1,77)

rs == (z7, s)

xg := prototype robot on hooks

Tg = G(ZL‘G, 7“8)

17

g 1= X9
T = G(13177”9)

It follows that we have the generation diagram indicatedig[E2

T9 = Tg
T

3%34 rg > (27, xs)
(@)
Tg

Figure 2.2: Directed graph representation of the Suthakavon-Chirikjian robot.

With the SIGA algorithm,

Ty X2 T3 T4 Ty Tg Ty Tg X9

x|1 1 1 0 1 0 1 1 O
|0 0 0 1 0 0 0 0 O
zz(0 0 0O O O O 0 0 0
4|0 0 0 O O O 0 0 O
z|0 0 0 0 0 1 0 0 O
x| 0 0 0 0 0 0 0 0 1
zz| 0O 0 0 O 0 0 0 0 O
z|[0 0 0 0 0 0 0 0 0
|0 0 0 0 0 0 0 0 O

18

— L T2 T3 T4 T5 Te T7 T8 T9 _
z|0 0 0 0 0O 0 0 0 O
|0 0 0 0 0 0 0 0 O
z3/0 0 1 0 0 0 0 0 O

Co — g0 0 0 O O O 1 0 0 |
z»|0 0 0 0 0 0 0 0 O
|0 0 0 0 0 0 0 0 0
zz|!0 0 0 0 0 0 0 1 O
x| 0 0 0 0 O 0 O 1 O
| Zo 0O 0 0o 0 0 0 0 1 |
Yo = {DO Co])

so thatry, 9, 14, 15 @andrg are immediately identified as part of the seed. The descegdaatrix

D, can also be deflated, yielding

Mo\M; = {z3, 4,77, 25, %9 }.

We are left with

Ty T2 Ty T

|1 1 1 O

Di=1|a2,]0 0 0 0 |,
zs| 0 0 0 1
ze| 0 0 0 O

19

rs 7 Tg To
z1 |0 O 0 O
Cy = 20 0 0 0 |,
z5| 0 0 0 O
zs| 0 0 0 O
E1 = |:D1 01:|)

so thatrs\z3, r7\x4, rs\ (27, x3), @andry\x9 NOW belong to the seed, and also

Ml\MQ = {CL’Q, I6}.

SinceR is now empty, we continue to operate only on the machine set.

1 Ty

D2 = x| 1 1 ’

Ty 0 0
giving us
Mg\Mg = {l’5}
Lastly, the matrix that is left is
T
Dy = :
T 1

which cannot be further reduced, yielding

M3 = Moo = {xl}’

20

andr, = 3. The seed set of order 9 for this system is

S =A{x1} U{r,re,rs\xs, 74,75, 76, 77\ T4, 78\ (27, T8), 79 \To }-

We have thus obtained a very logical, yet informative resthie original robot is (of course!)

needed to initiate the system, assuming the existence wfifolleresources.

2.5 Limitations

The two immediate limitations in the SIGA algorithm stemeditly from Assumptiof.68. There
are many instances where one machine is incapable of progladli the other machines in the
generation system; a simple example is the naturally ocautbiological cycle” required to start
an aquarium [15]. The generation diagram of this self-rdpoing system is illustrated in Fig.3,

using the model:

M = {xy,79,23,24}, and

R = {ri,ro, 73,74},

where we define each of the constituent machines and resourd¢ke following manner. The

sequence of generation steps is also outlined.

To ™ I3 T4 ™ To
Wist Ty
@)
T2

o)
T3
Figure 2.3: Directed graph representation of the bioldgigele in an aquarium.

x1 := algae

r1 := (chlorophyll,sunlight,water)

21

T9 := OXygen
xo = G(x1,77)

x3 := carbon dioxide

To i= X3

1 = G(x1,79)

T4 := aerobic bacteria

rs := aquarium detritus

3 = G(14,73)

r4 := (xo,0rganic waste as ammonia or nitrite)

xy = G(xy4,74)

In the above example, itis clear that selecting only one, @ndz, will result in an incomplete
machine seed set.

Secondly, suppose that there is more than one machine thahidegenerate and capable of
producing all the other machines in the generation systdith&3e machines, the SIGA algorithm
will pick one that is contained in the resourcesrf If more than one of these machines is con-
tained in the resources @&, then the algorithm arbitrarily picks a seed machine. If coesiders
a generation cycle af machines ana resources where each resource contains any one af the
machines, then the SIGA algorithm breaks down because d@ssiple that the seed machine does
not have a full resource for the first generation step.

These shortcomings are addressed in the Restricted Sedifitdéion (RSI) algorithm.

22

Chapter 3

The RSI Algorithm

Here, we take a more general approach to the seeding prodtehpresent necessary and sufficient

conditions to find an optimal seed for a larger class of gdieraystems.

3.1 Assumptions and Problem Definition

Again, we start by listing the basic assumptions requiredeled a generation system. Some
of the assumptions and definitions in this chapter are aitepetbut are included for chapter

completeness.
Assumption 3.1. Both the number of machines and the number of resources aee fini
Assumption 3.2. An inexhaustible supply of each resource is available.

Assumption 3.3. All the machines in the generation system must be produdtbdugh they need

not all belong to a seed.

As in the previous chapter, we can make the following assiomg@tbout the containment of

machines in resources.

Assumption 3.4.LetI" = (U, M, R, G) be a generation system. We assume that if machiise
contained in resource i.e.,z < r, then the ordered list of the elementsrdhat does not contain

the machiner also belongs to the set of resources, i:€z; € R.

23

The given self-reproducing system may not be surjective,exen if it is, we may not be able
to use the SIGA algorithm because Assumpioimay fail. To formulate seeding requirements
in a mathematically precise way, we begin by defining a seelécsng the class of generation
systems that we will deal with, and then using the propediahese systems to help setup the

seeding problem.

Definition 3.1. LetI" = (U, M, R, G) be a generation system. g&ed of order, for I is a set

S = MsU Rg, Where
Mg = {x,29,...,2,}, Ms C M, and

Rs = {ri,ro,...,7,}, Rs C R,

such that'y; € M, 3u; < 00,3(ry,) € Rs, Iyo € Mg, such thatG(yo, (r,,)) = v1.

In the rest of this chapter, we design an algorithm to produseed as per the above definition.
The idea is to reduce certain generation systems into a foatcan be easily seeded. We need
a few more definitions before we can indicate the type of gaiwr systems our algorithm is

restricted to.

Definition 3.2. The generation systein = (U, M, R,) is strongly regularif whenevery =
G(z,(r,,)), wherez andy are machines ang-,,) is a sequence qf; resources, we have A r

forall r € (r,,).
Thus, in a strongly regular generation system, no machindeaontained in its ancestry.

Definition 3.3. A familyis a generation systein= (U, M, R, G) where for all(x,y) € M, there
existsz € M, and(r,), (r,,) € R such that: = G(z, (r,,)) andy = G(z, (r,,)). A matriarchof a
family is an element, € A such that for all:y € M, 2, # xy, there existgr,,) selected fromR

such thatG(z1, (r,,)) = zo.

Note that empty sequences are allowed in the above defimtiariamily, so that it is possible

to consider eithet or y to be the common ancestor

24

Theorem 3.1. Every family has a matriarch.

Proof. See Appendifl O
Theorem 3.2. The directed graph representation of a family is weakly coteck

Proof. See Appendil]

The converse to Propositid®2 is not true: a generation system whose digraph is weakly

connected need not be a family (see Bidl for a counter-example).

1 T2

7

Figure 3.1: A weakly connected digraph representing twdlfam

Assumption 3.5. We assume that the generation system to be sedded, (U, M, R, G), is

strongly regular and made up of one or more disjoint families
We can now state the following.

Seed Identification Problem 2.GivenI', minimize the total cost of the machines and resources

in a seed under AssumptioBsl through3.5

3.2 Methodology

Assumption3.3 helps setup the seeding problem when we note that the untgiydirected
graph of a family is connected. Since the connected compsraéra graph are the equivalence
classes of the path existence relation between two vefti®¢sand the directed graph representa-

tion of the generation system to be seeded is made up of onera connected components, we

25

can partition this graph into its connected components sTfar the class of systems in Assump-
tion[3.5 seeding the whole generation system may be accomplisheddaing each individual
family.

To seed by family, we need to determine all the descendardsafticular machine. This is
facilitated by the notion of a “generation subsystem of amree” which is a subset of a particular

family and is itself a family.

Definition 3.4. Thegeneration subsystem of machingis the generation system
F:co = (U, ng; R:coa G)
where,

M, = M,

i=0
M, = {zeM:3(r;)€R:x=GCG(x(r;))}
R,, = |JR.,

i=0

R, = | J{(r) € R:Glxo, (r)) € M}.

In Definition[3.4, M. is the set of all the descendantsigfproduced aftei generations)/,,
is the set of all the descendantsigf Rio is the set of all resource sequences of lerigttat would
produce a descendant of, and R, is the set of all resource sequences that would produce a
descendant of,. Hence, the generation subsystemegfis the largest family for which, is a
matriarch.

The idea for the RSI algorithm is to determine the subsystemwhich there exists one ma-
chine capable of generating all other machines in the stdasydt is among these subsystems that
one may find a matriarch of a family. Consequently, indiviluséeding each of these subsystems
of matriarchs seeds the whole family. We will ety denote the set of matriarchs.

In the generation system of a matriaraly, every machine in the subsystem can be produced

26

except possibly, itself. Thus, in the course of seeding the subsysteny pthe machine to pick
for the seed set of the subsystefy,, is z,. The rationale for this process of identifying one
machine of highest rank that can generate every maching salisystem comes from the next two
propositions.

A necessary condition to minimizé/s| is the following.

Theorem 3.3.LetI" = (U, M, R, G) be a family, andS be a seed set df for which |Mg| is a

minimum. Then for alk € Mg,

P if [Mo| > 0;
p(r) =
maxyen p(y), If [Ms| = 0.

Proof. See Appendil]

Corollary 3.1. If I' = (U, M, R, G) is a family, and M. | > 0, then|Mgs| < |M|. On the other
hand, if| M| = 0, then an optimal\/s has|Mg| = 1.

The first statement above follows because an optimatan only include machines frof?.
The second statement above follows because there is onlynankine for which the maximum
rank condition is satisfied, a consequence of the fact thagrgdéion always proceeds outwards [5].

A sufficient condition to minimize)/s| is the following.

Theorem 3.4. Assume that the generation subsystem of machjne, = (U, M,, R,,G) is
strongly regular. Then a seed set fbt, S,, where Mg, = {z} and Rs, = R,\M, has the

minimum| Mg, |.
Proof. See Appendifl O

In a strongly regular family, if a machine is contained in saw@rce, then that resource cannot
be utilized in any sequence of resources used to generateabieine. Hence, the notion of con-

tainment has no effect on the seeding process for thesarsysihis is why we restrict the class

of generation systems in this chapter to those that areysolatie up of strongly regular families.

27

Assuming the given self-reproducing systermahachines andh resources is strongly regular
and made up of one or more disjoint families, the first steghefalgorithm would be to find the
generation subsystems of all the machines/ini.e.,

Step 1

forall z; e M,1<i<ndo
Determinel’,..

end for

Since we can represent a generation system as a weightedtedirgraph, we can use es-
tablished concepts of graph theory in the subsystem ideatibin process. With each machine
(vertex) as a starting point (root) in the initial generatgystem (directed graph), we need to find
the subsystem (maximally connected subgraph) that canrezated (reached from the root).

Two well known algorithms to compute the reachable comptsierna graph are the Breadth-
First Search (BFS) and the Depth-First Search (DFS) algosii8—21]. Applying either of these
algorithms to the graph of the generation system in Stepltlg/le,, for all 1 < i < n. In these
subsystems, there is one machine capable of generatingaalines in},, except possibly:;
itself. We now want to partition the initial generation systin the following manner.

Step 2

Select thd',, where| M, | > |M,,|, V1 < j < n.

ThisT',, is the largest generation subsystem of the initial selfa@pcing system. We consider
this to be our primary generation subsystem, and regardytstera where the machine set is
M\M,, to be a secondary generation subsystem. The secondarysteibsequires the removal
of all z € M,, from M. The idea is to seed our primary subsystem first, and then go toa
the secondary subsystem and partition and seed iteratiBghAssumptiorid.5 if M is strongly
regular and made up of one or more disjoint families, thékh/,. is also strongly regular and
made up of one or more disjoint families. That is, the remo¥aine of the connected components
of the graph does not affect the remaining connected cormpeonéthe graph since each connected

component is disjoint from each other.

28

In Step 2, if there are two subsysteins andl’,; with the same machine set, then betrand
x; are matriarchs for the same family. To ensure the optimalisgef this family, we will need to
compare the cost of the seed resources when the subsystems afprimary subsystem and when
the subsystem of; is a primary subsystem.

However, before we can tackle seeding of a primary subsy&edhby extension, the seeding
of all other partitions), we need to ensure that the subsysteder consideration has the property
that each offspring is generated from only one resourceteHfier, if we select all resources to be
a part of the seed set for the subsystem, we have avoided aegessary selection of redundant
resources.

LetJ : R — R be acost functional representing the mass of a resourdee gquiantity required
of a resource, or the resource’s availability, etc. We vwghiam make use of a result in graph theory
for the next step. In graph theory, a subgraph of a finite thcbgraph is called aranchingif
it has the following properties: it contains all the verigaf the original graph (spanning); it is
circuit-free; and the number of edges entering any verteesisthan or equal to one. If the number
of entering edges is zero for only one of the subgraph’s a&sti-, and the remaining vertices
all have only one edge entering them, then the branching iseatdd tree with root [20]. The
problem of finding a branching for which the sum of the edgdscissoptimal (a maximum) was
solved independently in [22—24], is well-treated in [18,2%), and can be efficiently implemented
using [26].

We have a similar situation if we first add a new machirig,so that all instances of the re-
sources (edges) that are used to produce machi(enter the root vertex) in the primary subsys-
tem (directed graph) are now used to produce mactiinéd/e can then use the Chu-Liu-Edmonds
algorithm to obtain a generation subsystem where Propa$sd is still applicable, but where
redundant resources are also not present.

The implementation of the optimal branching algorithm tissassumed requires that: 1) the
directed spanning tree that is found has a minimum rather shenaximum cost, and 2) a root

vertex is accepted as additional input, so that search éotrée starts from this root instead of the

29

first entry in a vertex-edge incidence list. We utilize theegons in formulating Step 3 of the RSI
algorithm.

Step 3

for all the matriarchs of the largest generation subsystem
if in the graph representation bf, z; has entering edgeken
Add a new vertex:,.
Change these edges so that they now erijter
end if
Find the directed minimum spanning tree (DMST) in the grafph.o with root atz;.
Lymin < the DMST ofl,,.
end for
Select thd’,.,,,;, for which ZTGRWM J(r) is a minimum.

We can now seed the resultant self-reproducing subsystem.
Step 4

Se; = {xi} U (Reymin\My,).
Next, we obtain the generation system that remains to beedeed
Step 5

Remove alke € M, from M.

We continue the process so far on the subsidiary generatimsystems, iterating from Step 2
until there are no more machines leftih. The entire seed set is the union of all the seed sets for
the various generation subsystems.

Step 6

if M # @ then
Go to Step 2.
else

S — S,

30

Stop.
end if

3.3 Properties

In this section, we make some claims about the Restricted Beatification algorithm and the

resultant seed that is output. The proofs of these claim&edaund in AppendiiBl

Theorem 3.5. The RSI algorithm is correct. That is, the output of the ailgpon is guaranteed to

be a seed for the given generation system.
Proof. See Appendil]

Theorem 3.6. The RSI algorithm is complete. That is, the algorithm is gnéeed to output a

seed if one exists for the given generation system.
Proof. See Appendifl]

Theorem 3.7.The RSI algorithm is guaranteed to stop after a finite numbgerations. The best-
case time complexity for the operation of this algorithmi8n + nm + 2m + 1) iterations. The
worst-case time complexity for the operation of this alduritis the worst o (n?m + 4n + 2m)

andO(n? + 5n + m) iterations.
Proof. See Appendil]

Theorem 3.8. The RSI algorithm produces a seed that is optimal with resggettte number of

machines and the cost of the resources in the seed.

The assumption of disjoint families is required to ensurgnoglity of the seed resource set.
Although the proposed algorithm also works for familiesttage not disjoint, no claims about
optimality can be made. However, we conjecture that theltaasiseed is close to optimal in that
case. If the families in the system are not disjoint, them $tef the RSI algorithm would need to

iterate from Step 1 instead of Step 2.

31

Proof. See Appendifl]

Theorem 3.9. Given a familyI' = (U, M, R, G), the size of the seed either increases or stays

constant with expanding/ or R.
Proof. See AppendiBl]

Of the difficulties listed in Sectiol.3 (b) and (c) are effectively handled with the RSI algo-

rithm, (a) and (d) are ineffectively handled, and (e) is rentdiied.

3.4 Example Application

Let us use the RSI algorithm to analyze a modified version ofSérmi-Autonomous Replicating
System The original Suthakorn-Kwon-Chirikjian generation systen Section2.4 is a single
family, and so the application of the RSI algorithm termisatéter one iteration. If we take into
account the necessity of batteries for operation, the egpdin becomes non-trivial. We stipulate
that the robot controller (RCX) runs on charged batteriestlaaithere is a battery charger running

on a supply of readily available electricity. Thus, the niiedi system is:

M = {;El,xg,x3,$4,3:5,xﬁ,x7,x8,x9,x10,x11},

R = {Tla r2,73,74,75,T6,77,78,T9, 7110}1 Where

x19 := battery charger

r10 := (electricity, uncharged batteries)
x11 := charged batteries

T = G(xloﬂ"lo)

and the definition for; becomes

r3 := (robot control systemys, 1)

It follows that we have the generation diagram indicatedi B2

32

Figure 3.2: Directed graph representation of the modifieti&korn-Kwon-Chirikjian robot.

This generation system is strongly regular, and is made upmflisjoint families. Applying
the RSI algorithm to this generation system yields an optseat for the system. To demonstrate
the workings of the algorithm, we give a part of the outputaattrestep.

Step 1:The machine sets df,,, 1 <1 < 11 are the following.

M,, = {371,1'2,3337374,56'5,91767357,378,559}

M,, = {$4}

M,, =0

M, =0

My = {21, T, T3, Ty, Ts, Tg, T7, Ty, To }
M., = {x9}

M, =

M., =

M,, —

M,,, = {3511}

M, =@

Step 2: We can select either; or z5. Since the sets of machines that can be generated are
equal,z; andzs; must be matriarchs for the same family.

Step 3:For x4,

33

Reyymin = {11,72,73, 74,75, 76, 7,78, T9 }-

The only choice made by the DMST algorithm is the selectionyajverr, in generatingr|,
since the former has lower cost.

Forxs, Reomin = {r1,72,73, 74,75, 76, 77, T8 } -

The DMST algorithm does not selegt

I min IS S€lected.

Step 4:For the first family, we get

5155 :{$5} U {T17T27T3\('r37I11)7T47T57T67

7"7\1’4, TS\(ZE'7, l’g)}

Step 5:We are left withM = {1, 211 }.
Step 6:We now go back to Step 2.
Step 2:We selectry.

Step 3: Ry, omin = {710}

Step 4:For the second family we get

Serg = {710} U{rio}.

Step 5:We are left withM = ©.

Step 6:A seed for this system is

S ={xs, 210} U {ri,r2,m3\(23,211), 74,75, 76,

7“7\964, 7“8\(557, 938), 7“10}-

Thus, the battery charger and the prototype robot with g@nppn initiate the semi-autonomous
replicating system. Contrary to intuition, the optimal sele@s not include the prototype robot

together with resources, but instead includes the progotgpot with gripper and fewer required

34

resources.

3.5 Limitations

Limitations of the RSI algorithm may be attributed to the rieginent for strong regularity in
the generation system. The computational complexity fecking whether a generation system
is strongly regular is exponential in the number of machiaed the rank of the system, and
polynomial in the number of resources. Hence, dependinghersize of the self-reproducing
system, it may not be feasible to check for strong regularity

As stated in the second flaw of the SIGA algorithm, there astaimces where strong regularity
is not satisfied; a simple example is the naturally occuroingne cycle when it is attacked by chlo-
rine in the atmosphere [14]. The generation diagram of #lisreproducing system is illustrated

in Fig.[3.3 using the model:

M = {xy,z9, 23,24, 25}, and

R = {ry,ro, 13,714,785},

where we define each of the constituent machines and resourtdee manner that follows. The
sequence of generation steps is also outlined.

[

Xy X2
Ts 9 >~ X1

X5 €3

T4>M 3 >~ XI5
4

Figure 3.3: Directed graph representation of the ozoneedyeing attacked by chlorine.

x1 := Oy, Or oxygen molecules

r, := ultraviolet radiation

35

x9 := O, or excited oxygen atoms
xy = G(x1,77)

r9 := (x1,neutral particle)

x3 := O3, Or ozone molecules

x3 = G(x9,19)

zy = ClO + O,y

x5 := Cl+ Oy

r3 := x5 (note that just’! is required)
xy = G(x3,73)

T4 = To

x5 = G(1y,74)

rs := (), a dummy resource

x1 = G(x5,75)

In the above example, it is clear that a more powerful algoriis desirable if such a self-

reproducing system is to be seeded.

36

Chapter 4

The S| Algorithm

This chapter formulates the general seed identificatioblpro and presents an extended version

of the RSI algorithm, the Sl algorithm.

4.1 Assumptions and Problem Definition

Just as in previous chapters, we start by providing a comikgtof the assumptions required for

seeding a generation system.
Assumption 4.1. Both the number of machines and the number of resources aee fini
Assumption 4.2. An inexhaustible supply of each resource is available.

Assumption 4.3. All the machines in the generation system must be produdtbdugh they need

not all belong to a seed.

Assumption 4.4. If machinex is contained in resource, i.e., z < r, then the ordered list of
the elements of that does not contain the machinmealso belongs to the set of resources, i.e.,

r\z € R.

We define a seed as in Sect@dl

37

Definition 4.1. LetI" = (U, M, R, G) be a generation system.g&ed of order. for I is a set

S = MsU Rg, Where
Ms = {x1,29,...,2,}, Ms C M, and

Rs = {ri,ro,...,7,}, Rs C R,

such that'y, € M, 3u; < 00,3(ry,) € Rs, Fyo € Mg, such thatG(yo, (r,,)) = v1.
We now relax the notion of strong regularity.

Definition 4.2. The generation systei = (U, M, R, G) is weakly regularif whenevery =

G(z,r), wherez andy are machines andis a resource, we haveA r.

Thus, in a weakly regular generation system, no machine eaoitained in any resource used
to produce that machine. In the next assumption, we willioomlt using the notions of families

and matriarchs as introduced in Sec{®d

Assumption 4.5.We assume that the generation system to be se€ded[/, M, R, GG), is weakly

regular and made up of one or more disjoint families.
We can now state the following.

Seed ldentification Problem 3.GivenT’, minimize the total cost of the machines and resources

in a seed under Assumptiosl through4.3

4.2 Methodology

The idea of the Sl algorithm is that under Assump#bB, seeding the whole generation system
may be accomplished by seeding each individual family, dsree To seed by family, we still
need to determine the generation subsystems of each mattonever, the key difference is that

in the course of seeding the subsystem of matriarctthe machines to pick for the seed set of the

38

subsystemsy,,, arex; and certain machines containedhy, . The additional machines fro,,
are required because we no longer have strong regularity.
The next theorem suggests an approach to seeding weakllaregneration systems, and

replaces the sufficient condition for minimizing/s| that was used by the RSI algorithm.

Theorem 4.1. Assume that the generation subsystem of maching€,, = (U, M,,, R,,,G), is

weakly regular. Ley € M,,, and(r,,+1) € R,,. Suppose that:
(1) Vi:1<i<m,zip1 = G(x1,(r:) #y.

(2) G(@mi1,rms1) = G(a1, (rmt1)) = .

3) y < (rm).

Then a seed set for the weakly regular faniily (z,,,41), (rm), G), 1SS = {z1,y} U {(rm)\y},

and.S has minimumMg|.
Proof. See AppendiiC. [

Theorenid.] states that if a sequence of resourcesy,,), is used to produce a sequence of
m + 1 machines(z,,,1), and machine is contained inr,,,) but does not belong ter,, 1), and
the resource seed set is devoid of all machines, then theingasbed set must consist gfand
the first machine inz,,1). Hence, we must examine the sequences of machines genbyated
matriarch when seeding weakly regular generation syst&vedirst present a Line Seeding (LS)

sub-algorithm, before giving the general Sl algorithm.

4.3 The LS Sub-Algorithm

Input: a simple path in the directed minimum spanning tree (DMSp)esentation of the weakly
regular generation subsystem of a matriargh that begins at;. The machines (vertices) in
this path constitutd/, and the resources (edges) used in this path consfituteet the path

length ben.

39

Output: a seed set§, for this simple path.

10:

11:

12:

13:

14:

15:

[*We create a new line graph, known as the “seeding graphgrder to help determine a
seed.*/
Mg — {x1}.

Initialize the seeding graph with one vertex, and zero edges.

for1<i<ndo

Lety «— G(xq, (14)).
if y iIs not a vertex in the seeding graftten
Add the machines contained {n;)\ (=1, y) that are not already on the seeding graph as
new vertices. Draw a directed edge from the last vertex tditeecontained machine,
from the first contained machine to the second contained mecand so on.
Add y to the end of this line graph with a directed edge that conwems the last contained
machine that was added.
else
if (x;)\z; and all the contained machines (in)\(z,y) arenot between ther; andy
vertices on the line graph (any contained machines that @rralready on the seeding
graph may simply be added in an appropriate positibain
Mg — Mg U {y}
end if
end if
end for
Rs «— R\M.
S «— Mg U Rg.

At each iteration of the LS sub-algorithm, the number ofrimediate machines grows by one.

If a path is not strongly regular because of one of the intdiate machines, then Theoréfl

comes into play, and the seeding graph is a tool to indicatehwhachines should be added to the

machine seed set.

40

Theorem 4.2. The LS sub-algorithm is correct. That is, the output of thesuB-algorithm is a
seed for a simple path in the DMST of the generation subsystenmatriarch that starts at the

root of the tree.

Proof. See AppendiiC]

4.4 Pseudocode

Input: a generation system afmachines andh resources that is weakly regular and made up of
one or more disjoint families, and cost functiohs M — RandK : R — R.
Output: a seed set§, for this generation system.
1: forall z; € M,1<i<ndo
2: Determinel’,,.
3: end for
/*In the above, with each machine (vertex) as a starting tp@oot) in the initial generation
system (directed graph), we need to find the subsystem (nadlyiconnected subgraph) that
can be generated (reached from the root). Two well knownrglgos to compute the reach-
able components in a graph are the Breadth-First Search (B¥Sha Depth-First Search
(DES) algorithms [18, 19, 21].*/
4: Selectthd’,, where|M,,,| > |M,,|, V1 < j < n.
[*The idea is to seed a primary subsystem first, and then gk tmaa secondary subsystem
M\ M,, and partition and seed iteratively.*/
5: for all the matriarchs of the largest generation subsystem

6: if in the graph representation Bf,, =; has entering edgeken

7: Add a new vertex:..
8: Change these edges so that they now erjter
9: endif

10: Find the directed minimum spanning tree (DMST) in the graph,0 with root atz;.

41

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

I'y,min < the DMST ofl,,.
for all simple paths in the DMST that beginatdo
Use the LS sub-algorithm to seed each path.

end for

Sz < U Spath-
end for
Select thes,, for which ZyEMsmi J(y) + ZTGRS% K (r) is a minimum.
[*We ensure that the primary subsystem has the propertytwt offspring is generated from
only one resource. Thereafter, we can select all resoundes & part of the seed set. We use
the Chu-Liu-Edmonds algorithm [20, 26] to find the DMST for lkeacatriarch in the primary
subsystem. For each of these DMSTs, we can apply the DFStalgao find all the simple
paths that begin at the root and utilize the LS sub-algorithreeed each path. The seed for
the entire subsystem for a particular DMST is the union ofsbeds for each path. We pick
the DMST seed with minimum total cost.*/
Remove allz € M, from M.
if M # @ then

Go to Lineld
else

S — Uxie]V[
end if

S,
Q

4.5 Properties

Theorem 4.3. The Sl algorithm is correct. That is, the output of the altun is a seed for the

given generation system.

Proof. See AppendiiC.]

42

Theorem 4.4. The Sl algorithm is complete. That is, the algorithm will autp seed if one exists

for the given generation system.
Proof. See AppendiiC. O

Theorem 4.5. The Sl algorithm is guaranteed to stop after a finite numbetesations. The time

complexity for the operation of this algorithm is polynomia
Proof. See AppendiiC. [

Theorem 4.6. The Sl algorithm produces a seed that is optimal with respet¢hé number of

machines and the cost of the seed.
Proof. See AppendiiC. [

The assumption of disjoint families is required to ensurgnog@lity of the seed resource set.
Although the proposed algorithm will work for families thate not disjoint, no claims about
optimality can be made. However, we conjecture that thdtasiseed will be close to optimal. If
the system does not possess disjoint families, therf2lihaf the S| algorithm would need to iterate
from line[instead of lined.

Of the difficulties listed in Sectiofh.3 (b), (c), (d) and (e) are effectively handled with the Sl

algorithm, and (a) is ineffectively handled.

4.6 Example Application

Because the Sl and RSI algorithms are so similar, the readefeised to Chaptéd for an example

of a robotic self-replicating system that may be seeded thi¢hSI algorithm. The example in
this section serves only to illustrate the working of lif@through[17 of the SI algorithm. To
demonstrate the applicability @ny self-reproducing system, not just robotic ones, we use the

naturally occurring atmospheric ozone cycle attacked lyrcte [14] as presented in SectiBB.

43

Every machine in the cycle is a matriarch for the family, andasseeding graph has to be

produced for each machine. If we start with, then the LS sub-algorithm yields the following

line graph and machine seed set:

O O O O ®)
X1 T2 T3 Ty Ty
]\45901 = {21, 25}.
Similarly, starting withz, yields:
O O O O ®)
Tz X1 T3 Xy T4

MSQQ - {IQ, Ty, xl}-

Starting withxs yields:
0——0

O O O
T3 T2 X5 Xy X

]\45353 = {x3, 75, 22}

Starting withx, yields:

O O O O O
Ty T2 Ty 1 T3
]\45904 = {1'4,513'2}.
Finally, starting withz; yields:
O O O O ®)
Is T1 Tz X3 T4
Ms, = {ws}

44

Weletd_ ... J(y) :==|Ms, |. The definition ofK is irrelevant in this example because the
setsRs, = R\M are equal for all <i < 5. Hence, for the cycle in Fig8.3 we select the seed

where

Mg = {xs},and

Rs = {7“1,7’2\%,7“3}-

From an environmental standpoint, it is interesting to fate vital chlorine is to the cycle so

that it always shows up in the machine seed set in one formathan

45

Chapter 5

Conclusions and Future Work

Three novel algorithms to identify a seed for certain clasgegeneration systems have been pro-
posed. These algorithms possess the following capabilitieszarious degrees: handling multi-
ple disjoint or intersecting generation subsystems; dansig resources and their composition;
dealing with machines of deficient rank that are used as ressyisolating seed machines from
generation cycles; and overcoming the difficulty of seedialf-reproducing systems where the
generation of a machine depends on the assistance of igiofis

The avenues for future research include examining how onecoatrol a generation system
to produce an optimal seed. Once issues of control have lesetved, the ideal of finding a seed
that can initiate an evolving self-reproducing system sdede pursued. With the theory in place
to analyze generation systems, the next step is to devedopytio synthesize generation systems.

All the algorithms presented here need to be extended tddly &r the determination, when-
ever possible, of a seed of pre-specified order; 2) incotp@@me notion of the quantity of a seed
resource needed to perpetuate a system; and 3) recognizempensate for time constraints that

may impose a larger-size seed upon the system.

46

Appendix A

Product Manufacturing Cycle Model

Here, we describe a model of the product manufacturing cyldies model demonstrates how the
production of copies of the merchandise require the assistaf entities that are affected by the
product. Let us assume the existence of a company thatlsislisroduct, and model the effect that

this product has on the company’s departments and the castom

Product
Product Characteristics
Inventor Sales
Product
Productio Customer
(Purchasing, Sale (Specifications, Sales)

Product Design

Figure A.1: Directed graph representation of a product rfeanturing cycle.

The company’s sales department is directly affected by teechandise because sales are
driven by the product’s characteristics. Sales persomeetesponsible for matching the product
with potential customers. Customers, through specificadiecuments and the number of pur-
chases, impact future iterations of the product’s desiganiacturing production is dependent

on this design, and on the purchasing of parts via moniesrgttefrom sales. Production creates

47

inventory, from which an instance of the product is selebbedale. This cycle is illustrated in the
Fig. AL

As the diagram indicates, it is clear that the cycle has ‘Wieses” that contain entities constitut-
ing a different stage of the cycle. In the context of the thgmwesented in this report, this product

manufacturing cycle model is an example of a weakly regugiegation system.

48

Appendix B

RSI Algorithm Proofs

Theorem[3.1

Proof. The proof is by construction. Specifically, we outline amateve algorithm that is guaran-
teed to identify a matriarch for a family. At the end of evetgration, the algorithm produces a
partition of the family into a candidate matriarch, a set@$ckndants of that candidate matriarch,
and a set of machines yet to be considered. During eachiatier#éthe size of the set of machines
yet to be considered is decreased by at least one unit, theokithe set of descendants of the
candidate matriarch is increased by at least one unit, amd@dhdidate matriarch itself may be
updated. The algorithm terminates when the set of machmbs tonsidered is empty, at which
time the candidate matriarch is confirmed as a matriarch.

To initialize the algorithm, consider two arbitrary maoksa: andy of the family. Sincer and

y are in the family, they have a common ancestowe consider three cases:

(1) If z = x, then the candidate matriarchasthe set of descendants of the candidate matriarch
is the set of all machines obtained in the process of gengratirom = (includingy), and the

initialization is complete.

(2) If z = y, then the candidate matriarchysthe set of descendants of the candidate matriarch
is the set of all machines obtained in the process of gengratirom y (includingx), and the

initialization is complete.

49

(3) If zis neitherz nory, then the candidate matriarchzisthe set of descendants of the candidate
is the set of all machines obtained in the process of gengravthz andy from z (including

x andy), and the initialization is complete.

Once the algorithm is initialized, each iteration proceagdollows. Letz be the candidate
matriarch, and consider an arbitrary machine the set of machines yet to be considered. Since

x andy are in the family, they have a common ancestoWe consider four cases:

(1) If z = z, then the candidate matriarch remainsnd all the machines obtained in the process
of generating from x (includingy) are transferred into the set of descendants of the camdidat
matriarch and removed from the set of machines yet to be deresi. This completes the

iteration.

(2) If z = y, then the candidate matriarch becomeand all the machines obtained in the process
of generating: from y (includingz) are transferred into the set of descendants of the camdidat
matriarch and removed from the set of machines yet to be deresi. This completes the

iteration.

(3) If z is neitherz nor y but is in the set of descendants of the candidate matrianem the
candidate matriarch remains and all the machines obtained in the process of generating
from z (includingy) are transferred into the set of descendants of the camdidatriarch and

removed from the set of machines yet to be considered. Thiplates the iteration.

(4) If z is neitherxz nor y but is in the set of machines yet to be considered, then theidaie
matriarch becomes, and all the machines obtained in the process of generatitigrbandy
from z (includingz andy) are transferred into the set of descendants of the cardiwatriarch

and removed from the set of machines yet to be considered.cbmpletes the iteration.

]

50

Theorem3.2

Proof. Weak connectivity of the directed graph representatiol of (U, M, R,) follows di-
rectly from the definition of a family. Indeed, sinfes a family, for a particulatz,y) € M,3z €
M, and(r,), (r,,) € R such thatt = G(z, (r,)) andy = G(z, (r,,)). In the directed graph repre-
sentation ofl", there is a path from to = through the sequence of edges labdled, and a path
from z to y through the sequence of edges labeled). Hence, in the undirected version of this
directed graph, there is a path frano y via z. By the definition of weak connectivity, this means
thatx andy are weakly connected in the directed graph. Since thisésftuall vertex pairs in the

directed graph representation of a family, the entire grapteakly connected. O
Theorem3.3

Proof. This proof is by contradiction. Lef\/s| be a minimum.

Case 1 |My| > 0.

Suppose thaiz € Mg such thap(xz) < p. From Generation Theory [5], sindéis a family,
Jy € M,r € Rsuchthatt = G(y,r), andp(z) < p(y) < p.

From the definition of a seed (Definiti@hl), 3= € Mg, (r,) € Rs such thaty = G(z, (1,,)).

Thus, both: andz belong toM.

Let (r,,) := ((rn),r), so that(r,,) € R.

ThenG(z, (r,,)) = x, and saS’ = (Ms\{z}) U Rg is a valid seed.

But [Ms\{xz}| < [Ms

, and sg M| is not a minimum, a contradiction.

Case 2 | M| =0.

Suppose thaflz € Mg such thatp(x) is not the maximum over all machines in the family.
From Generation Theory [5], sindéis a family, 3y € M,r € R such thatr = G(y,r), and
p(x) < p(y) < p.

From the definition of a seed (Definiti@hl), 3= € Mg, (r,) € Rg such thaty = G(z, (r,)).

Thus, bothz andz belong toMs.

Let (r,,) :== ((rn),), so that(r,,) € R.

51

ThenG(z, (r,,)) = z, and saS’ = (Ms\{z}) U Ry is a valid seed.

But | Ms\{z}| < |Mg|, and sgMs| is not a minimum, a contradiction.

Theorem[3.4

Proof. This proof follows directly from the definitions of strongyuarity and generation subsys-
tem. Indeed, ifRs, N M, = @, then we need to hayé/s,| > 1 so that at least one machine is
present to generate the system. Sihgeas the generation subsystemafx can generate every
machine in)M, by definition. Sincd’, is strongly regular, any resources that contain machines
cannot be used to generate those machines, by definitios.implies that machines additional to

x are not needed. Therefore, the Set= {z} U (R,\M,) is a valid seed.

Moreover,| Mg, | = 1, the minimum possible.]
Theorem[3.8

Proof. We have to prove that the output setis a seed for the initial self-reproducing system.
SinceT is a union of families, and’ = (J S, for = belonging to the set of matriarchdo, it
suffices to prove that ead), is a seed for one of the constituent families. Thus, we wibvgkhat
each of Steps 1 through 4 is correct.

Step 1

By assumption, the generation system to be seeded is madeounp of more strongly regular
families. The directed graph representation of a singlelyais weakly connected. Thus, the
directed graph representation of the initial generatiastesy is made up of one or more weakly
connected components.

Each vertex in the directed graph representation belongsweakly connected component.
Both the BFS or DFS algorithms are able to correctly find theicestreachable from a root in a
weakly connected directed graph [18]. Thus, the use of etthéhese algorithms ensures that this

step is correct.

52

Step 2

Here, the Sl algorithm considers a finite number of sets eaithfinite cardinality. There are
several known algorithms that are able to correctly coumtelements in a set and sort the sets in
descending order. The use of any of these algorithms raauhe selection process being correct.

Step 3

To find the directed minimum spanning tree for the selectedkiyeconnected component
requires use of the Chu-Liu-Edmonds algorithm, or Tarjafiisient implementation of the same.
These algorithms have been proved to be correct [22, 23 6} as in Step 2, there are known
algorithms for correctly evaluating the sum of a functiooalthe elements of a set, sorting these
sums, and picking the set with the minimum sum. The use of &thyese algorithms results in the
selection process being correct.

Step 4

This part of the proof is similar to the proof of Theor&@wl. Sincel,,.;, is the generation
subsystem of with the added property that each offspring is generatea foaly one resource,
x can generate every machineM,,,, = M, by definition. Sincd’,,.;, is strongly regular, any
resources that contain machines cannot be used to geneoate machines, by definition. This
implies that machines additional toare not needed. Thus, the sét= {2} U (Rynin\M,) is a
valid seed.

Therefore,S, is a seed for all’,.

Theorem[3.8

Proof. We have to show that if a seed exists, the algorithm in thigpapll output one possible
seed. Consider that a seed for a generation system always-eiis is the trivial seed, consisting
of all the machines and resources in the generation sysient, = M U R. Indeed, the algorithm
presumes this seed at the start, before removing redunelsmiinces and machines that belong to
a matriarch’s subsystem. Theor@n% shows that the output of the algorithm is a seed.

Thus, completeness is guaranteed. O

53

Theorem[3.7

Proof. Note that each iteration of the algorithm removes elemeats & set with finite cardinality,
and the algorithm stops once the set is depleted.

Consider the time complexity of Steps 1 to 5 during the firsatien of the algorithm.

In Step 1, the use of either one of the BFS or DFS algorithmsifresdomplexityO(n + m)
[18].

In Step 2, the fact that each machine has to be visited in dodéetermine the cardinality of
the machine set of its generation subsystem results in actimgplexity ofO(n).

In Step 3, the time complexity of the DMST algorithm &n,m,) [20], wheren, is the
number of machines in the primary subsystem, ands the number of resources in the primary
subsystem. Accounting for the possibility that there is@rtban one matriarch to apply the DMST
algorithm to, and that the cost of the seed for each matrmstlbsystem needs to be evaluated,
the time complexity of this step 9 (ngn,m, + ng), whereng is the number of matriarchs.

In Step 4, the fact that (in the worst case) all primary sutesggesources have to be visited in
order to remove any contained machines results in a time lexityof O(m,,).

In Step 5, all primary subsystem machines have to be remowedthe original machine set,
so that the time complexity of this step(¥n,,).

Thus the overall time complexity of Steps 1 to 5 during the fieration of the algorithm is
O(2n +m + ny, +my, + nonymy, +ng).

In the best case, the Sl algorithm executes once and thendyi®oe matriarch. This implies
thatn, = n, m, = m andng = 1, so that the resultant best-case time complexity(i$n + nm +
2m+1).

In the worst case, either the Sl algorithm executes oncelzaare taren matriarchs, or the Sl
algorithm executes times and each machine is a matriarch for a family that hasgleton set of
machines. Thus, we have two possibilities to consider.

The first possibility isn, = n, m, = m andng = n, so that the resultant time complexity is

O(n*m + 4n + 2m).

54

The second possibility is, = 1 andm,, = 1 implying thatno = 1, and after the first pass
through the algorithm, Steps 2-5 are repeated 1 times. This time complexity i€ (2n + m +
4)+O0((n—1)(n+4)) =0(n*+5n+m). O

Theorem[3.8

Proof. LetI" = (U, M, R, G) be made up of strongly regular disjoint families. From Theorem
3.1 there are at lead¢t matriarchs. Since each family is the generation subsysfearmatriarch,
and each of these subsystems is strongly regular, Théd#imdicates that the minimuni\/s| is

k.

In the proof of Theoren8.5 we have shown that each pass through Steps 1 to 4 of the SI
algorithm produces a seed for a family, before the familyeimoved from the original generation
system. This seed for the family contains one machine. Metla@ek families in the original
system, the Sl algorithm will iteratle times before returning a seed that is the union of the seed
sets for each family. Thus, there will Bemachines inV/s.

Therefore, the number of machines is optimal because ieistinimum it could be.

By assumption, all the machines in the given generation systed to be produced. Hence,
the optimal seed for each family must include the least ga@sources such that all machines in
the family are generated. This implies that there must exjEth between the root vertex and all
other vertices in the directed graph representation ofubsystem of a matriarch, and the DMST
that is found via the Chu-Liu-Edmonds algorithm satisfies gnoperty with minimal cost. If there
are multiple matriarchs, the resource set that is selestdetileast costly. Taking all such minimal
cost resources produces an optimal seed resource set fofaaty, and since the families are
disjoint, the union of these sets result in a seed that ismgbtivith respect to the cost of the

resources. n
Theorem[3.9

Proof. As a result of expanding/ or R, the rank of a family will either increase or stay constant.

This is because there are now more machines and resourdes gemeration system, and so it

55

is possible that machines originally located in the outgetaare now able to produce offspring.
Hence, it is possible that the rank increases.

Consider the original familyl", prior to the expansion ai/ or R. Let z be a machine in the
outer layer ofl". Since generation always proceeds outwards [5]larsa family, expanding\/
or R may result in an increase in the rank of the system. If thisicdhere is now a degenerate
machiney that is a descendant of In other words, nowd(r,,) € R such thatG(zx, (r,)) = v.

Sincey is degenerate, it does not need to belong#g so that| /5| remains the same. Also,
if (r,,) uses resources that already belongito then|Rs| stays unchanged.

However, if (r,,) uses resources that differ from those /g, then these resources need to
be added to the resource seed set. He[igg, increases, producing a corresponding increase in

19). O

56

Appendix C

Sl Algorithm Proofs

Theoremi4. 1

Proof. This proof follows directly from the definition of a seed. $tirwe are given that < (7).
SinceVl < i < m, x;11 = G(x1, (1;)), a seed for the weakly regular family/, (x,,+1), (1), G)

is:

S = Az} U{lrm)}:
= {z, v} U{(rm)\y}-

If R¢ N Mg = @, then we need to havé/s| > 1 so that at least one machine is present to
generate the system. We are given thatan produce every machine (im,, ;) using(r,,). From
the seed set above, sincér,,) contains onlyy buty cannot be generated by, the system needs

to be started with both; andy. Therefore|Mg| = 2, the minimum possible.]
Theoremi4.2

Proof. This proof uses mathematical induction. We assume thatehergtion subsystem of our
matriarchz,, wherel',, = (U, M,,, R,,,G), is a DMST, and that we have selected a simple path
in this tree that starts at;. Let M be the set of machines that are the vertices in this path, and

R be the set of resources that are the edges in this path.Rlet R\M, and Mg = {z1}.

57

Let r be the first resource edge in this path, anae the second resource edge in this path. Let
y := G(G(z1,7),s), which is different fromG(z,,) by the definition of a path.

ConsiderG(zq, 7). If r > y, the sub-algorithm taked/s = Mg U {y}, and by Theorerd.],
the newls forms a seed for the path when united witly. Otherwise, the original/s is still a
seed when united wits, sincey is not required.

For the induction hypothesis, assume thai forms a seed witlRs whenz, uses a sequence
of (ry—1) resources. Ley := G(G(xy, (rr—1)), rr), which is different fromG(xy, (rx—1)) by the
definition of a path.

ConsiderG(zy, (rg-1)). If (rx—1) > v, the sub-algorithm take3/s = Mg U {y}, and by
Theorend.], the newM s forms a seed for the path when united with. Otherwise, the original

Mgy is still a seed when united witRg, sincey is not required. O
Theoremi4.3

Proof. We have to prove that the output setis a seed for the initial self-reproducing system.
SinceT is a union of families, and’ = (J S, for = belonging to the set of matriarchido, it
suffices to prove that eac¥), is a seed for one of the constituent families. Thus, we witvgkhat
each of Steps 1 through 3 is correct.

Step 1

By assumption, the generation system to be seeded is madeome of more weakly regular
families. The directed graph representation of a singleljaim weakly connected. Thus, the
directed graph representation of the initial generaticstesy is made up of one or more weakly
connected components.

Each vertex in the directed graph representation belongsweakly connected component.
Both the BFS or DFS algorithms are able to correctly find theiaestreachable from a root in a
weakly connected directed graph [18]. Thus, the use of eithéhese algorithms ensures that this

step is correct.

58

Step 2

Here, the Sl algorithm considers a finite number of sets eaithfinite cardinality. There are
several known algorithms that are able to correctly coumtelements in a set and sort the sets in
descending order. The use of any of these algorithms raauhe selection process being correct.

Step 3

To find the directed minimum spanning tree for the selectedkiyeconnected component
requires use of the Chu-Liu-Edmonds algorithm, or Tarjafiisient implementation of the same.
These algorithms have been proved to be correct [22, 23V@&have shown by Theorefhd that
the LS sub-algorithm is correct for any path in the tree. &itiee union of seed sets is itself a
seed setS, = |J S,a iS @ valid seed. Just as in Step 2, there are known algoritbmsofrectly
evaluating the sum of a functional on the elements of a sethgdhese sums, and picking the set
with the minimum sum. The use of any of these algorithms tesulthe selection process being
correct.

Therefore,S,, is a seed for all’,. O
Theoremid.4

Proof. We have to show that if a seed exists, the algorithm in thigpapll output one possible
seed. Consider that a seed for a generation system always-etis is the trivial seed, consisting
of all the machines and resources in the generation sysient = M U R. Indeed, the algorithm
presumes this seed at the start, before removing redunelsminces and machines that belong to
a matriarch’s subsystem. Theor@n3 shows that the output of the algorithm is a seed.

Thus, completeness is guaranteed. m
Theoremi4.5

Proof. The LS sub-algorithm is convergent because no circuitd exthe DMST, and there are
a finite number of paths of finite length that begin at the rddhe tree. Each iteration of the Sl
algorithm removes elements from a set with finite cardipadind this algorithm stops once the set

is depleted. Consider the time complexity of Steps 1 to 4 duthe first iteration of the algorithm.

59

In Step 1, the use of either one of the BFS or DFS algorithmsitreesdomplexityO(n + m)
[18].

In Step 2, the fact that each machine has to be visited in dodéetermine the cardinality of
the machine set of its generation subsystem results in aciimplexity ofO(n).

In Step 3, the time complexity of the DMST algorithm &n,m,) [20], wheren, is the
number of machines in the primary subsystem, ands the number of resources in the primary
subsystem. The use of the DFS algorithm to identify the sngaths in the DMST has time
complexityO(n + m). The LS sub-algorithm visits all the machines in a simpléhpgatce, and
this is repeated for a finite number of simple paths. The taa&t tin the worst case) all primary
subsystem resources have to be visited in order to removeamtgined machines results in a time
complexity ofO(m,). Accounting for the possibility that there is more than oraniarch to apply
the DMST algorithm to, this entire step could be repeatedimes, whereng is the number of
matriarchs. Thus this step has polynomial time complexity.

In Step 4, all primary subsystem machines have to be remavedthe original machine set,
so that the time complexity of this step(¥n,,).

Thus the overall time complexity of Steps 1 to 4 during the fiesation of the algorithm is of

polynomial order.]
Theorem/4.8

Proof. LetI" = (U, M, R, G) be made up ok weakly regular disjoint families. From Theorem
3.1 there are at leag¢t matriarchs. Since each family is the generation subsysfeamatriarch,
the minimum|Mg| is .

In the proof of Theorend.3, we have shown that each pass through Steps 1 to 3 of the Sl
algorithm produces a seed for a family, before the familyeimoved from the original genera-
tion system. By Theoref.] this seed contains the minimum number of machines to genera
each path. For paths with a common sub-path, the minimum auofomachines to generate the
common sub-path is the same and is unaffected by the unioatape For disjoint paths, the min-

imum number of machines to generate the paths is the sum ofitieium number of machines to

60

generate each path, which is the number of machines prodyctgk union operation. Thus, the
number of machines in the machine seed set is a minimum for feadly. If there arek disjoint
families in the original system, the Sl algorithm will itéea: times before returning a seed that is
the union of the seed sets for each family. Therefore, thebeurof machines is optimal because
it is the minimum it could be.

By assumption, all the machines in the given generation systsed to be produced. Hence,
the optimal seed for each family must include the least gasources such that all machines in
the family are generated. This implies that there must exjsth between the root vertex and all
other vertices in the directed graph representation ofubeystem of a matriarch, and the DMST
that is found via the Chu-Liu-Edmonds algorithm satisfies gnoperty with minimal cost. If there
are multiple matriarchs, the seed set that is selected Is@isécostly. Taking all such minimal cost
seeds produces an optimal seed set for each family, andteieéamilies are disjoint, the union of

these sets results in a seed that is optimal with respecsto co n

61

Bibliography

[1] J.von NeumanriTheory of Self-Reproducing Automasa Burks, Ed. University of lllinois
Press, 1966.

[2] R. A. Freitas Jr. and R. C. Merkl&jnematic Self-Replicating Machined.andes Bioscience,
2004.

[3] M. Sipper, “Fifty years of research on self-replication: éwerview,” Artifical Life, vol. 4,

no. 3, pp. 237-257, 1998.

[4] P. Owens and A. G. Ulsoy, “Self-replicating machines: Pnéivwg degeneracy,” The Univer-
sity of Michigan, Tech. Rep. CGR-06-02, 2006.

[5] P. Kabamba, “The von Neumann threshold of self-reprodusystems: Theory and compu-
tation,” The University of Michigan, Tech. Rep. CGR-06-11, 200

[6] A. Menezes and P. Kabamba, “Information requirements filireproducing systems in lu-
nar robotic colonies,” irProceedings of the 57th International Astronautical Corsgr&o.

IAC-06-A5.P.04, 2-6 October 2006.

[7] ——, “A combined seed-identification and generation analgtgorithm for self-reproducing
systems,” inProceedings of the 2007 American Control Confererice13 July 2007, pp.
2582-2587.

62

[8] ——, “An optimal-seed identification algorithm for self-relucing systems,” ifProceed-
ings of the 58th International Astronautical Congress. IAC-07-D3.2.02, 24-28 September
2007.

[9] ——, “Optimal seeding of a class of self-reproducing systémsSubmitted to the 17th IFAC
World Congress6-11 July 2008.

[10] B. Foing, “Roadmap for robotic and human exploration of the maad beyond,” ilProceed-
ings of the 56th International Astronautical Congress. IAC-05-A5.1.01, 17-21 October
2005.

[11] J. R. Wertz and W. J. Larson, EdSpace Mission Analysis and Desj@nd ed. Microcosm
Press, 1999.

[12] R. Diestel,Graph Theory3rd ed. Springer-Verlag Heidelberg, 2005.

[13] H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M.Seott, L. Zipursky, and
J. Darnell,Molecular Cell Biology 5th ed. W. H. Freeman, 2004.

[14] P. V. Hobbs]ntroduction to Atmospheric Chemistry Cambridge University Press, 2000.
[15] W. H. Adey and K. LovelandDynamic Aquaria2nd ed. Academic Press, 1998.

[16] G. S. Chirikjian, Y. Zhou, and J. Suthakorn, “Self-replicgtirobots for lunar development,”
IEEE/ASME Transactions on Mechatroniesl. 7, no. 4, Dec. 2002.

[17] J. Suthakorn, Y. T. Kwon, and G. S. Chirikjian, “A semi-autommus replicating robotic
system,” inProceedings of the 2003 IEEE International Symposium on Qeettipnal Intel-

ligence in Robotics and Automatiodul. 2003.

[18] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Steitipduction to Algorithms2nd ed.
The MIT Press, 2001.

63

[19] A. V. Aho, J. E. Hopcraft, and J. D. Ullmafihe Design and Analysis of Computer Algo-

rithms. Addison-Wesley Publishing Company, 1974.

[20] S. EvenGraph Algorithms Computer Science Press, 1979.

[21] J. Hopcroft and R. Tarjan, “Algorithm 447: Efficient algomtis for graph manipulation,”
Communications of the ACMol. 16, no. 6, pp. 372-378, 1973.

[22] Y. J. Chu and T. H. Liu, “On the shortest arborescence of a @idegraph,’Scientia Sinica
vol. 14, pp. 1396-1400, 1965.

[23] J. Edmonds, “Optimum branchingsJournal of Research of the National Bureau of Stan-

dards vol. 71B, no. 4, pp. 233-240, 1967.

[24] F. Bock, “An algorithm to construct a minimum directed spaugtree in a directed network,”

Developments in Operations Reseangh. 29-44, 1971.

[25] R. M. Karp, “A simple derivation of Edmonds’ algorithm for amum branchings, Net-
works vol. 1, pp. 265-272, 1971.

[26] R. E. Tarjan, “Finding optimum branchings\letworks vol. 7, pp. 25-35, 1977.

64

	Introduction
	Motivation
	Background
	Difficulty of the Seeding Problem

	The SIGA Algorithm
	Assumptions and Problem Definition
	Methodology
	Pseudocode
	Example Application
	Limitations

	The RSI Algorithm
	Assumptions and Problem Definition
	Methodology
	Properties
	Example Application
	Limitations

	The SI Algorithm
	Assumptions and Problem Definition
	Methodology
	The LS Sub-Algorithm
	Pseudocode
	Properties
	Example Application

	Conclusions and Future Work
	Product Manufacturing Cycle Model
	RSI Algorithm Proofs
	SI Algorithm Proofs

